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IV. CONCLUSION

The coupling terms in the perturbation formulas for both the

waveguide and resonator perturbations are proportional to the cou-

pling parameters x and ~ in the constitutive equations, and to

the dot product of the electric and magnetic fields in unperturbed

modes. In the present study we have demonstrated that by exciting

properly two degenerate modes in waveguides or resonators with

ideally conducting walls, the perturbation is proportional to either

the nonreciprocity parameter x or the chirality parameter ~. This

gives away tomeasure the material parameters y andfi separately.

Moreover, it appears that it is possible to distinguish between the

effects of chirality and nonreciprocity by changing the phase shift

of the two modes in a waveguide or a resonator. This makes the

method rather convenient and simple.

If there exist only H- or E-polarized fields in a waveguide, the cou-

pling term is always imaginary, andthenonreciprocityof inclusions

gives only a second-order effect on the propagation factor. In contrast,

in a resonator with either H- or E-modes, the coupling term is always

real, andthere arenofirst-order effects ontheresonant frequency due

to the chirality parameter ~. Physically, the perturbational methods

of the biisotropic media parameters measurement are based on the

coupling between two orthogonal modes when a biisotropic sample

ispresent inside awaveguide or a resonator. Since the coupling effect

is small, it seems preferable to excite both the modes by an external

source and to measure the shift of the resonant frequency or the

propagation factor of a degenerate mode. This approach makes the

effect more pronounced. The paper presents a theoretical treatment of

the measurement problem and there are many practical considerations

to betaken into account. For example, thetwo degenerate modes are

also coupled because of the losses in the walls of a waveguide or

a resonator, and that can mask small effects due to the inclusion.

These and other possible sources for errors have to be eliminated in

practicaf applications of the suggested measurement techniques.
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An Efficient Method for Computing the Capacitance

Matrix of Multiconductor Interconnects in

Very High-Speed Integrated Circuit Systems

Shui-Ping Luo and Zhcng-Fan Li

Abstract— A new method for computing the capacitance matrix of
multicondnctor interconnects with firnite metalfization thickness is devel-

oped. Converting the vertical wafl of the rectangular conductors into the
equivalent horizontal strips allows the Green’s function in the spectral
domain and the FFT algorithm to be used, which makes the method
more effective for computing capacitance matrix of the interconnects.

I. INTROIIUCTION

As is well known, the computation of the electrical parameters of

the interconnects for very high-speed integrated circuit systems is a

hard task, even with the quasi-TEM assumption. For such structures

(for example, the chip-to-chip or on-chip interconnects for VHSIC),

multiconductor transmission lines with finite metallization thickness

in multilayered dielectric media are used. C. Wei, R. F. Barrington,

and others, [1], [2] have employed the well known moment method

using the total charge Green’s function, which has a very simple form

(like the free space Green’s functicm). But the method is consuming
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Fig. 1. An interconnect system.

ofcomputer resources drre to additional subsections onthedlelectrlc-

to-dielectric interface in the moment method. Other methods, such

as the spectral domain method and the method of lines, are effective

only forthe case of zero-thickness conductors. This paper preseuts an

effective but simple method forcalculating the capacitance matrix of

the interconnects considering their finite metallization thickness. The

results from this method are sufficiently accurate for application and

are in agreement with those of others, but the computing efficiency

of this method is improved.

II. THEORY AND ANALYSIS

The cross-section of the interconnects discus~ed here is ~hown as

Fig. 1. The structure consists of a multiconductor with rectangular

shape and some planar dielectric layers. Then, we divide the contour

of all conductors into N equal-length subsections to obtain a discrete

system. According tothemoment method wlthrect~ngular pulse basis

functions and point-matching test functions, the potential

at the mid-points of each subsection can be presented as

functions

(1)

where on is the average charge density to be determined on n-th

subsection and g“, ,, is the coefhcient given by

9rn, n =
/

Tm(. r, rJ)J Bn(J’.J’)G(L,ylJ’.)()l/(ilil(2)
A17r, Al,,

where Dn(.r, ~) is the basis function, ~~,(t, y) is the test function

and G(Z, y I ./, y’) is the Green’s function in the spatial domain.

As everyone knows, the expressions of free-charge Green’s hmc-

tion in spatial domain for multilayered dielectric structule are tedious,

and the convolution calculation in (2) is also quite complicated.

Hence, the moment method using the general free charge Green’s

function in the spatial domainis lengthy in application.

If the free charges are located on the zero-thickness conducting

strips between the dielectric layers. then the simple form Green’s

function in the spectral domain cm be used and the convolution

calculation can be replaced by multiphcauon in spectral domain.

Then, the FFT algorithm is used for transformation between the

spectral domain and spatial domain. This can apparently reduce the

computing task.

For resolving the problems with fimte-thickness conductor, the

equivalence shown m Fig. 2 lS used. Here, the subsections along

the vertical wall of the conductors are rotated by 90degrces around

their centers to become the corresponding horizontal subsections, and

the original structure of interconnects is replaced by the equivalent

multilayered and horizontal metallic strips with zero-thickness. This

equivalence is only valid for such interconnects, with gaps between

the different conductors larger than their thickness. This is true for

normal interconnects structures.

For the equivalent structure, the total length L of each layer

existing on the metallic strips is divided into M equal subsections

eqtrivalence

m
-x z

//////////// ////////////7

Fig, 2, The equivalent tmnsformingof the rectangular conductor.

and their length is Ax. We then define

{

1 jAx– Az/2<.r<j Ax+-iLr/2
~J(.r) = o elsewhere

]=O.l . . . ..1T-1 (3)

T,(r) = 6(.z – iLr) i=()>l, . . ..hl-l. (4)

Here, BJ(.r) and T,(z) are the rectangular pulse basis function on

jth subsection and Dirac test function on ith subsection, respectively.

Thccoefficient g~,~,,,j in(2) forithsubsection oflth layer to jth

subsection of kth layer can be written as

r’) d.r’ d.r

yA.c)Gl,k(.u I z’) dx’ dz

(5)

Gt,k(~ I r’) isthe Green’s function forkhto kth metallic layer.

Transforming (5) from spatial domain into spectral domain, we can

get following equation in spectral domain:

~z,k ?,J(a) = %(~)~1.k(a) (6)

where a is the variable in spectral domain and

~o(c~) = FIBO(Z)] = sin(rra*Az)/(ra). (7)

The symbol F means the Fourier transform.

~(, k ( u ) is the Green’s function in spectral domain for multilayered

dielectric media, which can be easily obtained from the recurrence

formulas in [3]. so that coefficient gl,~,,,~ in spatial domain can be

obtained thlough inverse Fourier transform

gt,~,z,j = F-’IBo(a)G,,~(u )]lr=(,-,)~r. (8)

Then, the capacitance matrix can be derived from gl,~,,,J.

The Fourier transform is realized by the FFT algorithm. According

to the sampling theorem, the number of the sample points M (i.e. the

number of subsections on each layer) must be many enorrgh to reflect

the variation of the potential function on the horizontal strips and gaps

for avoiding the aliasing. In our experience, 2–3 subsections along

the vertical wall and 5–10 subsections along the horizontal wall on

each conductor are sufficient for desirable computing accuracy. For

the same reason, thetotallength L ofeachlayer must beas large as

5–6 times of the range occupied by the conductors.

III. NUMERICAL EXAMPLES

Examplel: Apairof coupled microstrips onadielectric slab over

aconductor ground plane arshown in Fig. 3. If wetake2 subsections

along the vertical wall. 6 subsections along the horizontal wall on

each conductor, and 128 sample points along the total horizontal

length L for FFT algorithm, the results from this method are agreeable

to those of [1] and [2], as shown in Table I. However, the CPU time

of thm method is only about 1/5 of that of [2].
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Fig. 3. Coupled microstrip.

TABLE I

capacitance this method reference [11 reference [21
F/m

.

C(I, 1) O. 9213E-10 O. 9165E-10 0. 9236e-10
C(l, 2) -O. 8302E-11 -O. 8220E-11 -O. 8494E-11
c (2, 1) -O. 8302E-11 -O. 8220e-11 -O. 8494E-11
c (2, 2) O. 9213E-10 O. 9165E-10 O. 9236E-10

+
Y

-- 0.7
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Fig. 4. Two conductors in two dhTerent dielectric layers.

TABLE II

capacitance this method reference [1] reference [41
F/m

C(I, 1) 0, 3697E-10 O. 3651E-10 0. 3701E-10
C(1,2) -0, 1584E-11 -O. 1562E-11 -0. 1520E-11
c (2, 1) -0. 1584E-11 -0. 1562E-11 -0. 1520E-11
c (2, 2) O. 2134 E-9 0. ZO99E-10 0, 2108 E-9

Example 2: There are two different rectangular conductors in two

dielectric layers above a ground plane as shown in Fig. 4. The results

using this method together with those of [1] and [4] are shown in

Table II, and the computing speed of this method is also much faster

than those of other methods.

IV. CONCLUSION

A new method for calculating the capacitance matrix of the multi-

conductor interconnects is given. The computing speed is faster than

that of other methods with the same accuracy, and the desired storage

of the computer is also decreased, so this method is effective for

computing the electrical parameters of the

speed/high-complexity electronic systems.
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Eigenmode Sequence for an Elliptical

Waveguide with Arbitrary Ellipticity

Shan-jie Zhang and Yao-chun Shen

Abstract- E]genmode sequeuce for au elliptical waveguide with arbi-
trary ellipticity is studied by directly calculating the parametric zeros of
the modified Mathieu functions of the first kind and their derivatives.
The normalized cutoff wavelength of the lowest 100 successive modes are
presented, and the curvefitting expressions for the determination of the
cutoff wavelength of the lowest 10 order modes are given, which are valid
for the ellipticities ranging from 0.0 to 0.99.

I. INTRODUCTION

Elliptical waveguides have wide applications such as radar feed

lines, multichannel communication and accelerator beam tubes, The

determination of the cutoff wavelength of the elliptical waveguide is

one of the most important problems for designing the waveguide or

analyzing the wave propagation in the waveguide. In 1938. Chu [1]

first presented the theory of the transmission of the electromagnetic

waves in elliptical waveguide. Since then some more numerical

results about the cutoff wavelengths in elliptical waveguide have

been obtained [2]–[4]. In 1970, Kretzschmar [5] obtained the curves

of the cutoff wavelengths for the 19 successive modes and the

approximative formula for the eight lowest order modes. Recently

Goldberg [6] calculated the cutoff wavelengths for the six lowest

modes and gave a correction to the field pattern plotted in [1].

In fact, the determination of the cutoff wavelength of an elliptical

waveguide is a problem of calculating the zeros of the modified
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