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IV. CONCLUSION

The coupling terms in the perturbation formulas for both the
waveguide and resonator perturbations are proportional to the cou-
pling parameters  and k in the constitutive equations, and to
the dot product of the electric and magnetic fields in unperturbed
modes. In the present study we have demonstrated that by exciting
properly two degenerate modes in waveguides or resonators with
ideally conducting walls, the perturbation is proportional to either
the nonreciprocity parameter x or the chirality parameter x. This
gives a way to measure the material parameters y and x separately.
Moreover, it appears that it is possible to distinguish between the
effects of chirality and nonreciprocity by changing the phase shift
of the two modes in a waveguide or a resonator. This makes the
method rather convenient and simple.

If there exist only H - or F-polarized fields in a waveguide, the cou-
pling term is always imaginary, and the nonreciprocity of inclusions
gives only a second-order effect on the propagation factor. In contrast,
in a resonator with either H- or E-modes, the coupling term is always
real, and there are no first-order effects on the resonant frequency due
to the chirality parameter . Physically, the perturbational methods
of the biisotropic media parameters measurement are based on the
coupling between two orthogonal modes when a biisotropic sample
is present inside a waveguide or a resonator. Since the coupling effect
is small, it seems preferable to excite both the modes by an external
source and to measure the shift of the resonant frequency or the
propagation factor of a degenerate mode. This approach makes the
effect more pronounced. The paper presents a theoretical treatment of
the measurement problem and there are many practical considerations
to be taken into account. For example, the two degenerate modes are
also coupled because of the losses in the walls of a waveguide or
a resonator, and that can mask small effects due to the inclusion.
These and other possible sources for errors have to be eliminated in
practical applications of the suggested measurement techniques.
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An Efficient Method for Computing the Capacitance
Matrix of Multiconductor Interconnects in
Very High-Speed Integrated Circuit Systems

Shui-Ping Luo and Zheng-Fan Li

Abstract— A new method for computing the capacitance matrix of
multiconductor interconnects with finite metallization thickness is devel-
oped. Converting the vertical wall of the rectangular conductors into the
equivalent horizontal strips allows the Green’s function in the spectral
domain and the FFT algorithm to be used, which makes the method
more effective for computing capacitance matrix of the interconnects.

I. INTRODUCTION

As is well known, the computation of the electrical parameters of
the interconnects for very high-speed integrated circuit systems is a
hard task, even with the quasi-TEM assumption. For such structures
(for example, the chip-to-chip or on-chip interconnects for VHSIC),
multiconductor transmission lines with finite metallization thickness
in multilayered diclectric media are used. C. Wei, R. F. Harrington,
and others, [1], [2] have employed the well known moment method
using the total charge Green’s function, which has a very simple form
(like the free space Green’s function). But the method is consuming
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Fig. 1. An interconnect system.

of computer resources due to additional subsections on the dielectric-
to-dielectric interface in the moment method. Other methods, such
as the spectral domain method and the method of lines, are effective
only for the case of zero-thickness conductors. This paper presents an
effective but simple method for calculating the capacitance matrix of
the interconnects considering their finite metallization thickness. The
results from this method are sufficiently accurate for application and
are in agreement with those of others, but the computing efficiency
of this method is improved.

II. THEORY AND ANALYSIS

The cross-section of the interconnects discussed here is shown as
Fig. 1. The structure consists of a multiconductor with rectangular
shape and some planar dielectric layers. Then, we divide the contour
of all conductors into N equal-length subsections to obtain a discrete
system. According to the moment method with rectangular pulse basis
functions and point-matching test functions, the potential functions
at the mid-points of each subsection can be presented as

N
¢7n,n = ng,nan m=12-- N (1)
n=1

where ¢, is the average charge density to be determined on n-th
subsection and g, » is the coefficient given by

Gm.n = / T (2, y) Bt  y )G, y | 2oy ) dl dl (2)
Alm Aln

where B, (.r, y) is the basis function, T {a, y) is the test function
and G(z, y | £', y') is the Green’s function in the spatial domain.

As everyone knows, the expressions of free-charge Green's tunc-
tion in spatial domain for multilayered dielectric structure are tedious,
and the convolution calculation in (2) is also quite complicated.
Hence, the moment method using the general free charge Green's
function in the spatial domain is lengthy in application.

If the free charges are located on the zero-thickness conducting
strips between the dielectric layers. then the simple form Green’s
function in the spectral domain can be used and the convolution
calculation can be replaced by multiplicauion in spectral domain.
Then, the FFT algorithm is used for transformation between the
spectral domain and spatial domain. This can apparently reduce the
computing task.

For resolving the problems with finite-thickness conductor, the
equivalence shown mn Fig. 2 15 used. Here, the subsections along
the vertical wall of the conductors are rotated by 90 degrees around
their centers to become the corresponding horizontal subscctions, and
the original structure of interconnects is replaced by the equivalent
multilayered and horizontal metallic strips with zero-thickness. This
equivalence is only valid for such interconnects, with gaps between
the different conductors larger than their thickness. This is true for
normal interconnects structures.

For the equivalent structure, the total length L of each layer
existing on the metallic strips is divided into 3/ equal subsections

equivalence
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Fig. 2. The equivalent transforming of the rectangular conductor.

and their length is Az. We then define

B,(x) = 1 jAr—Ax/2 <o < )Ar+Ar/2
o) = 0 elsewhere
J=0.1.---,M—1 (3

T(r)=6(x —iAr)  i=0,1,---.M—1. “)

Here, B, (x) and T.(x) are the rectangular pulse basis function on
jth subsection and Dirac test function on ith subsection, respectively.

The coefficient ;.4 ,,, in (2) for ith subsection of ith layer to jth
subsection of kth layer can be written as

L L
g, = / TL(I)/ B,(2"Gip{e | 2')yde' dr
0 0

f

L L
/ o(x — iAw)/ Bo(a' — jA2)Gia(z | 2)dz dz
Jo 0
= Bo(a‘)*Gl.k(.’L‘) 5

Gia(a | & ) is the Green’s function for Ith to kth metallic Jayer.
Transforming (5) from spatial domain into spectral domain, we can
get following equation in spectral domain:

Jik 1,(@) = Bo(a)Gri(a) (6)
where « is the variable in spectral domain and
Bo(a) = F[Bo(z)] = sin (raxAz)/(ra). @

The symbol F means the Fourier transform.

G ¢4 () is the Green's function in spectral domain for multilayered
dielectiic media, which can be casily obtained from the recurrence
formulas in [3]. so that coefticient y; 4., , in spatial domain can be
obtained through inverse Fourier transform ‘

Jlkay = F_l{BO(Q)Gl.k(u)]|z:(z—])Ar- (8)

Then, the capacitance matrix can be derived from g; %...,.

The Fourier transform is realized by the FFT algorithm. According
to the sampling theorem, the number of the sample points A (i.e. the
number of subsections on each layer) must be many enough to reflect
the variation of the potential function on the horizontal strips and gaps
for avoiding the aliasing. ln our experience, 2-3 subsections along
the vertical wall and 5-10 subsections along the horizontal wall on
each conductor are sufficient for desirable computing accuracy. For
the same reason, the total length L of each layer must be as large as
5-6 times of the range occupied by the conductors.

III. NUMERICAL EXAMPLES

Example 1: A pair of coupled microstrips on a dielectric slab over
a conductor ground plane ar shown in Fig. 3. If we take 2 subsections
along the vertical wall. 6 subsections along the horizontal wall on
each conductor, and 128 sample points along the total horizontal
length L for FFT algorithm, the results from this method are agreeable
to those of [1] and [2], as shown in Table I. However, the CPU time
of this method is only about /5 of that of [2].
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Fig. 3. Coupled microstrip.
TABLE 1
capacitance this method reference [1] reference {2]
F/m *
Ca, 1 0.9213E-10 0.91658-10 0.9236e-10
€(1,2) -0, 8302E-11 -0.8220E-11 -0. 8494E-11
€2 1) -0. 8302E-11 -0.8220e-11 -0. 8494E-11
C(22) 0.9213E-10 0.9165E-10 0.9236E-10
Y
o ~-]0. 7
c = ¢ ,n_ 0.6
Py | ‘10 5
i I o4
[ I - K///;
2
21:6'880 l ! (_)_‘2411/;
l I
0.3, <01, fo ‘o1 los X
TITTITT T 77777777 77T

Fig. 4. Two conductors in two different dielectric layers.

TABLE II
capacitance this method reference [1] reference [4]
F/m
€, 1) 0. 3697E-10 0. 3651E-10 0.3701E-10
C(1,2) -0. 1584E-11 -0. 1562E-11 -0. 1520B-11
(2,1 -0. 1584E-11 -0. 1562E-11 -0. 1520B-11
€22 0. 2134E-9 0.2099E-10 0. 2108E-9

Example 2: There are two different rectangular conductors in two
dielectric layers above a ground plane as shown in Fig. 4. The results
using this method together with those of [1] and [4] are shown in
Table I1, and the computing speed of this method is also much faster
than those of other methods.

IV. CONCLUSION

A new method for calculating the capacitance matrix of the multi-
conductor interconnects is given. The computing speed is faster than
that of other methods with the same accuracy, and the desired storage
of the computer is also decreased, so this method is effective for

computing the electrical parameters of the interconnects for high-
speed/high-complexity electronic systems.
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Eigenmode Sequence for an Elliptical
Waveguide with Arbitrary Ellipticity

Shan-jie Zhang and Yao-chun Shen

Abstract—Eigenmode sequence for an elliptical waveguide with arbi-
trary ellipticity is studied by directly calculating the parametric zeros of
the modified Mathieu functions of the first kind and their derivatives.
The normalized cutoff wavelength of the lowest 100 successive modes are
presented, and the curvefitting expressions for the determination of the
cutoff wavelength of the lowest 10 order modes are given, which are valid
for the ellipticities ranging from 0.0 to 0.99.

. INTRODUCTION

Elliptical waveguides have wide applications such as radar feed
lines, multichannel communication and accelerator beam tubes. The
determination of the cutoff wavelength of the elliptical waveguide is
one of the most important problems for designing the waveguide or
analyzing the wave propagation in the waveguide. In 1938, Chu [1]
first presented the theory of the transmission of the electromagnetic
waves in elliptical waveguide. Since then some more numerical
results about the cutoff wavelengths in elliptical waveguide have
been obtained [2]-[4]. In 1970, Kretzschmar [5] obtained the curves
of the cutoff wavelengths for the 19 successive modes and the
approximative formula for the eight lowest order modes. Recently
Goldberg [6] calculated the cutoff wavelengths for the six lowest
modes and gave a correction to the field pattern plotted in [1].
In fact, the determination of the cutoff wavelength of an elliptical
waveguide is a problem of calculating the zeros of the modified
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